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In summary, the data presented above indicate the great pro­
pensity that exists for heterolytic cleavage of the N-O bond of 
suitably derivatized /V-arylhydroxamic acids. It provides a solid 
basis for the proposal that sulfate esters of 7V-arylhydroxamic acids 
can ionize to produce acylarylnitrenium ions as the ultimate 
carcinogens derived from certain aromatic amines. 
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(12) Product yields8 were determined by HPLC analysis vs. an internal 
standard. The yields were as follows: 8a, 100% (29:71 ratio of 1,2,3- to 
1,2,5-substitution); 8b, 86%; 8c, 100% (45:55 ratio of 1,2,3- to 1,2,5-substi­
tution); 8d, 100% (46:54 ratio of 1,2,3- to 1,2,5-substitution); 8e, 87%; 8f, 96%; 
8g, 96%. All products were stable to the reaction conditions. 
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Many important redox reactions involve the formal transfer 
of hydride from a carbon-hydrogen bond.2,3 Compounds in which 
a carbon-hydrogen bond is adjacent to several carbon-metal bonds 
should be especially reactive,3b since loss of hydride or hydrogen 
may yield a cation or radical stabilized by hyperconjugation.4'5 

Loss of hydrogen is fastest when the carbon-hydrogen and car­
bon-metal bonds are antiperiplanar,6 so the best donors should 
resemble structure 1. The first synthesis of a compound of this 
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Treatment of tris[(triphenylstannyl)methyl]methane (2)3b with 
6 equiv of iodine cleanly produced hexaiodostannane 3. Aqueous 
sodium sulfide converted this intermediate into 1,3,5-triphenyl-
2,4,6-trithia-l,3,5-tristannaadamantane (4)7'8 in 79% overall yield. 
The large coupling between the bridgehead hydrogen and tin 
(V(119SnJi) = 206.5 Hz)9 confirmed that all three carbon-tin 
bonds were antiperiplanar to the central carbon-hydrogen bond. 
The long tin-sulfur bonds (2.41 A)10 were expected to introduce 
a significant element of strain, and X-ray crystallographic study 
of compound 4 has shown that the bridgehead carbon is severely 
flattened as a result.11 

In chloroform at 25 0C, stannaadamantane 4 reduced tri-
phenylcarbenium hexafluorophosphate to triphenylmethane in 83% 
yield. Unlike the very slow reduction of triphenylcarbenium by 
tris[(triphenylstannyl)methyl]methane (2),3b reduction by stan­
naadamantane 4 is almost instantaneous. More impressive is the 
observation that stannaadamantane 4 reduces alkyl halides to the 
corresponding hydrocarbons. For example, when a-bromo-p-
phenylacetophenone (27 jumol) was warmed with compound 4 (30 
Mmol) and AIBN (16 /*mol) in benzene (1.5 mL, 75 0C, 3 h), 
p-phenylacetophenone was formed in 48% yield.12 In general, 
iodides are reduced fastest, followed by bromides and then 
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chlorides.13 Trimethyltin chloride was not reduced, suggesting 
that the central carbon-hydrogen bond of stannaadamantane 4 
is stronger than a representative tin-hydrogen bond. 

Since these reductions are accelerated by AIBN, we believe 
that the central carbon-hydrogen bond of compound 4 is cleaved 
homolytically, producing radicals 5 or 6 (Scheme I). Allyl-
stannanes 7 are then formed by abstraction of halogen.14 These 
reactive compounds could not be isolated, but evidence for their 
formation comes from the following experiment. When allyl-
stannane 7 (X = Br) was warmed with excess carbon tetrabromide 
(benzene, AIBN, 95 0C), l,l,l,5,5,5-hexabromo-3-methylene-
pentane (8)8,15 was formed in 60% overall yield by a reaction 
characteristic of allylstannanes. 
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The reductions of alkyl halides by stannaadamantane 4 are 
similar to dehalogenations effected by tin hydrides.16 However, 
we doubt that compound 4 is actually converted into a tin hydride, 
since it is stable in the absence of reducible substrates, and no 
additions to carbon-carbon or carbon-oxygen double bonds have 
been observed. We therefore attribute the reactivity of stan­
naadamantane 4 to its unusual central carbon-hydrogen bond. 
Related compounds that lack this feature are in fact inert.17 For 
example, trithiatristannacyclohexane 10 did not reduce 1,2-di-

PhN Ph 

.Sn . 

Ph-Sn Sn-Ph 
I \ < - . / I 

Ph 5 Ph 

Ph3SnCH2CH2CH2SnPh3 

11 

1£ 
bromoethane, nor did bis[(triphenylstannyl)methyl]methane (l l)3 b 

reduce a-bromoacetophenones in the presence of AIBN. 
The central carbon-hydrogen bond in stannaadamantane 4 is 

an unusually reactive source of hydrogen, comparable in some 
respects to a tin-hydrogen bond. The efficient and selective 
reductions of alkyl halides by stannaadamantane 4 suggest that 
related, more accessible compounds may prove to be synthetically 
useful. 
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Displacements of potential surfaces of excited electronic states 
relative to the ground-state surface are of fundamental importance 
in spectroscopy, photophysics, and photochemistry. The mag­
nitudes of such displacements along specific normal modes are 
usually calculated from Franck-Condon factors.1 Recently the 
multimode displacements in transition-metal complexes were 
calculated using the intensities of fundamentals in Raman spec­
tra.2"6 In principle, resonance Raman overtone intensities can 
provide complementary information, but in practice they rarely 
exhibit significant intensity in polyatomic molecules with many 
displaced normal modes.3 

During the course of our studies of the excited-state properties 
of metal nitrosyl compounds, we discovered that the Cr(CN)5NO3" 
ion possesses almost ideal spectroscopic characteristics for de­
termining excited-state distortions from Raman overtone inten­
sities. There are a relatively small number of significantly dis­
placed normal modes, thus giving both a relative large overtone 
intensity (18% of that of the fundamental) and concomitantly 
enough fundamentals to provide a cross-check of the calculation. 
In addition, the electronic absorption spectrum exhibits enough 
vibronic structure at low temperature7 to enable the E00 band to 
be observed and thus allow accurate tuning of the laser to exact 
resonance with the electronic origin. The successful calculation 
of the absorption spectrum from the Raman-determined dis­
placements provides a second cross-check. We report here the 
first calculation of the displacement of a potential surface along 
a given normal mode in a multimode, polyatomic transition-metal 
complex from the intensity of its overtone. 

The displacement of Ak of the excited-state potential surface 
along the kth normal model of frequency uk is given by3 

/,o* ^(2((W1- E)/a) 
O) 

/20*/Ao* >s the intensity ratio of the overtone to the fundamental, 
a1 is related to the absorption bandwidth, and e„ is a function based 
on the energy difference between the absorption band maximum 
and the laser Raman excitation.3 

The resonance Raman and electronic absorption spectra are 
shown in Figure 1. By use of the first overtone intensity (Table 
I), the absorption spectral line width, and an e^/tj ratio of 0.752, 
the displacement along the Cr-N stretching normal mode cal­
culated by eq 1 is 2.20. (On the assumption that this coordinate 
is puely the uncoupled M-N stretch, this displacement is 0.09 A.) 
As a check, the displacement along this normal coordinate is 
calculated from the intensities of the fundamentals by using 
methods previously described.2"6 The displacement calculated by 
these complementary methods is 2.60 (~0.10 A). The two 
calculated displacements agree within experimental error. 

The value of the Raman methods for determining the dis­
placement is especially apparent because the usual Franck-Condon 
calculation is not feasible. The electronic absorption band (as-
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